
A Novel NO Insertion into Cyclopropane Ring by Use of  $\text{NOBF}_4$ .  
Formation of 2-Isoxazolines

Nobuyuki ICHINOSE, Kazuhiko MIZUNO, \* Toshiyuki TAMAI, and Yoshio OTSUJI \*  
Department of Applied Chemistry, College of Engineering,  
University of Osaka Prefecture, Sakai, Osaka 591

The reaction of 1,2-diarylcyclopropanes with  $\text{NOBF}_4$  in  $\text{CH}_3\text{CN}$  gave 3,5-diaryl-2-isoxazolines in good yields. For unsymmetrically substituted cyclopropanes, the mixtures of two isomeric isoxazolines were obtained. The mechanism and regioselectivity in this NO insertion into the cyclopropane ring are described.

Nitrosonium salts are known to act as electrophilic nitrosation reagent and as oxidizing reagent for organic compounds.<sup>1-3)</sup> These salts also generate radical cations of organic compounds via one-electron transfer from organic compounds to these salts.<sup>4,5)</sup> However, little is known about the NO insertion to carbon-carbon single bond.<sup>6)</sup> We now report a novel NO insertion reaction into cyclopropane ring of 1,2-diarylcyclopropanes by use of  $\text{NOBF}_4$  to give 3,5-diaryl-2-isoxazolines.

The nitrosonium salt  $\text{NOBF}_4$  ( $0.022 \text{ mol dm}^{-3}$ ) was added to an acetonitrile solution of 1,2-bis(4-methoxyphenyl)cyclopropane 1a ( $0.02 \text{ mol dm}^{-3}$ ) under argon atmosphere. The solution rapidly turned red-violet which gradually disappeared within 30 min. After the disappearance of the color, 10% of aqueous  $\text{Na}_2\text{CO}_3$  solution  $20 \text{ cm}^3$  was added, and the mixture was extracted with two  $30 \text{ cm}^3$  portions of benzene. Organic layer was washed with water, dried over  $\text{Na}_2\text{SO}_4$ , and



a :  $\text{Ar} = \text{Ar}' = 4\text{-CH}_3\text{OC}_6\text{H}_4$ ; b :  $\text{Ar} = \text{Ar}' = 4\text{-CH}_3\text{C}_6\text{H}_4$ ;  
c :  $\text{Ar} = \text{Ar}' = 4\text{-ClC}_6\text{H}_4$ ; d :  $\text{Ar} = \text{Ar}' = \text{C}_6\text{H}_5$ ;  
e :  $\text{Ar} = \text{Ar}' = 4\text{-CNC}_6\text{H}_4$ ;  
f :  $\text{Ar} = \text{C}_6\text{H}_5$ ,  $\text{Ar}' = 4\text{-CH}_3\text{OC}_6\text{H}_4$ ;  
g :  $\text{Ar} = 4\text{-ClC}_6\text{H}_4$ ,  $\text{Ar}' = 4\text{-CH}_3\text{C}_6\text{H}_4$

evaporated under reduced pressure. Recrystallization of the residue from methanol gave 3,5-bis-(4-methoxyphenyl)-2-isoxazoline (2a 88%), and a small amount of 3,5-bis(4-methoxyphenyl)-2-isoxazole (4a < 5%). The structures of these products were determined by elemental analyses, spectral properties,<sup>7)</sup> and also by the following chemical transformations. The pyrolysis of 2a at > 200 °C gave 4-methoxybenzonitrile, 4-methoxyacetophenone, and a small amount of 4-methoxybenzaldehyde.<sup>8)</sup> The oxidation of 2a with DDQ in benzene or CrO<sub>3</sub> in acetic acid gave 4a in nearly quantitative yield.<sup>8)</sup> The reaction of 1a with two equiv of NOBF<sub>4</sub> gave 4a which was apparently formed by oxidation of 2a with NOBF<sub>4</sub>. Similar treatments of other 1,2-diaryl(cyclopropanes with NOBF<sub>4</sub> afforded the corresponding 3,5-diaryl-2-isoxazolines. The results are summarized in Table 1. The yield of 2-isoxazolines decreased with increasing the oxidation potentials of the starting cyclopropanes. In the case of 1e, the NO insertion did not occur, but 1e was recovered.

When unsymmetrically substituted 1,2-diaryl(cyclopropanes 1f-g were used as substrates, the NO insertion occurred regioselectively, giving 2f-g as major products.

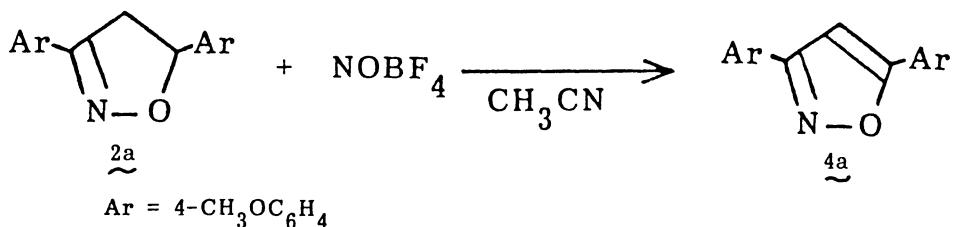
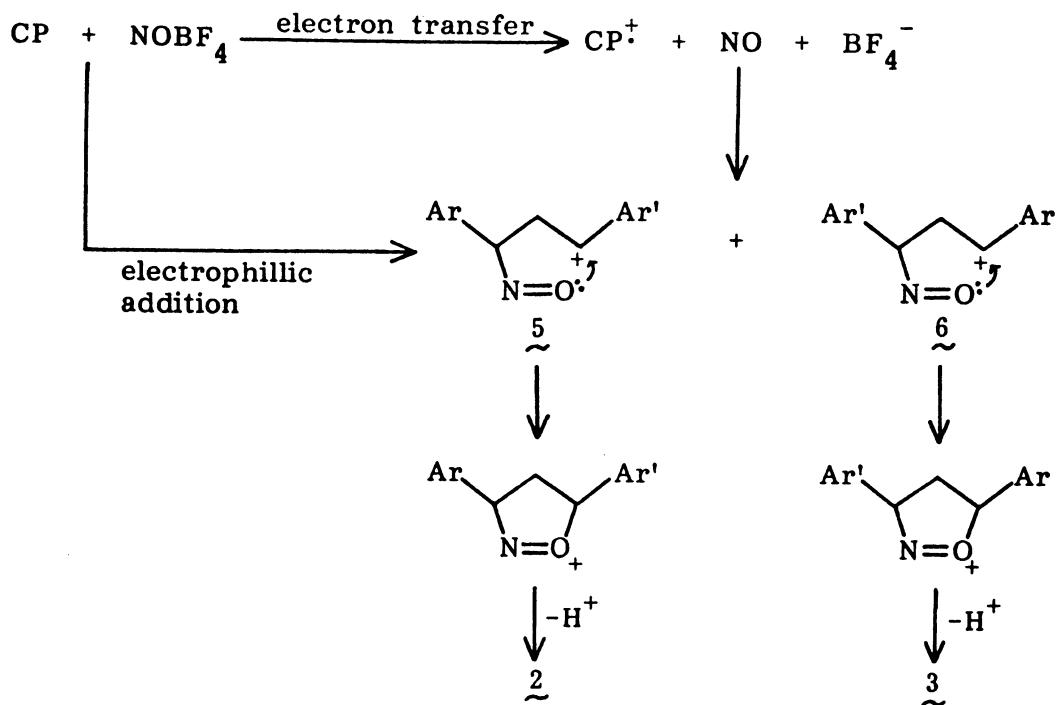



Table 1. The NO Insertion into Cyclopropanes


| Compd     | E <sup>ox</sup> <sub>p/2</sub> /V <sup>a)</sup> | Yield/% <sup>b)</sup> |                     | Isomer ratio <sup>c)</sup> | Mp of <u>2</u> /°C |
|-----------|-------------------------------------------------|-----------------------|---------------------|----------------------------|--------------------|
|           |                                                 | <u>2</u> + <u>3</u>   | <u>2</u> : <u>3</u> |                            |                    |
| <u>1a</u> | 0.55                                            | 88                    |                     |                            | 141-142            |
| <u>1b</u> | 0.90                                            | 80                    |                     |                            | 106-107            |
| <u>1c</u> | 1.06                                            | 38                    |                     |                            | 96-97              |
| <u>1d</u> | 1.14                                            | 26                    |                     |                            | 73-74              |
| <u>1e</u> | 1.26                                            | 0                     |                     |                            |                    |
| <u>1f</u> | 0.75                                            | 70                    | 9 : 1               |                            | 105-106            |
| <u>1g</u> | 1.00                                            | 45                    | 7 : 3               |                            |                    |

a) Oxidation potentials of cyclopropanes vs. Ag/Ag<sup>+</sup> in acetonitrile. b) Isolated yields of isoxazolines.

c) Determined by 270 MHz <sup>1</sup>H NMR.

A plausible mechanism for the NO insertion reaction is shown in Scheme 1. The first step is the one-electron transfer from 1,2-diarylcyclopropanes (CP) to  $\text{NOBF}_4$  to produce their radical cations  $\text{CP}^+$  and NO. This process was rationalized by the following experiments. A catalytic amount of  $\text{NOBF}_4$  (1/50 equiv.) caused a rapid cis-trans isomerization of  $\text{la}$  giving a stationary state mixture of cis- $\text{la}$  and trans- $\text{la}$  in a 5 : 95 ratio. The formation of radical cation of  $\text{la}$  was also supported by a red-violet coloration of the reaction mixture, whose absorption maximum was at 560-570 nm.<sup>10)</sup> The production of NO was recognized by evolution of  $\text{NO}_2$  upon introducing air into the reaction mixture. The second step is the attack of NO on  $\text{CP}^+$  to give cation intermediates  $\text{5}$  and  $\text{6}$ . The intramolecular ring closure of these cations, followed by deprotonation, gives 2-isoxazolines. The regioselectivity in the NO insertion into unsymmetrically substituted 1,2-diarylcyclopropanes may be determined by the stability of the cation intermediates: the cation intermediates  $\text{5f-g}$  would be more stable than  $\text{6f-g}$  by electron-donating substituents on  $\text{Ar}'$ .

The other mechanism that involved the direct attack of  $\text{NO}^+$  to the cyclopropane ring can not be ruled out at present.<sup>6a)</sup>



Scheme 1.

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

#### References

- 1) G. A. Olah, *Aldrichimica Acta*, 12, 189(1979).
- 2) G. A. Olah, L. Nosko, S. Kuhn, and M. Szelke, *Chem. Ber.*, 89, 2374(1956); G. A. Olah, G. Salem, J. S. Staral, and T. Ho, *J. Org. Chem.*, 43, 173(1978).
- 3) G. K. S. Prakash, P. S. Iyer, M. Arvanaghi, and G. A. Olah, *J. Org. Chem.*, 48, 3358(1983); R. Weis, K. G. Wagner, and M. Hertel, *Chem. Ber.*, 117, 1965 (1984).
- 4) W. Ando, R. Sato, S. Kobayashi, C. Takyu, A. Yamagishi, and H. Inaba, *J. Am. Chem. Soc.*, 102, 4526(1980); T. Akasaka and W. Ando, *Tetrahedron Lett.*, 26, 5049(1985); T. Akasaka, M. Nakagawa, Y. Nomura, R. Sato, K. Someno, and W. Ando, *Tetrahedron*, 42, 3807(1986).
- 5) S. F. Nelsen and R. Akaba, *J. Am. Chem. Soc.*, 103, 2096(1981).
- 6) The addition of nitrosonium ion to alkenes was reported:
  - a) M. L. Scheinbaum and M. B. Dines, *Tetrahedron Lett.*, 1971, 2205.
  - b) S. F. Nelsen, personal communication; M. F. Teasley, Ph. D. Dissertation, University of Wisconsin, Madison, 1987.
- 7) 2a: mp 141-142 °C.  $^1\text{H}$  NMR( $\text{CDCl}_3$ , 270 MHz)  $\delta$  = 3.30(1H, dd,  $J$  = 8.6 and 17.2 Hz), 3.71(1H, dd,  $J$  = 10.9 and 17.2 Hz), 3.81(3H, s), 3.84(3H, s), 5.66(1H, dd), 7.11(4H, ABq,  $J$  = 8.5 Hz,  $\Delta\nu$  = 109.7 Hz), 7.28(4H, ABq,  $J$  = 9.3 Hz,  $\Delta\nu$  = 195.0 Hz). MS(70 eV) 283( $\text{M}^+$ ). Found: C, 72.13; H, 6.13; N, 4.96%. Calcd for  $\text{C}_{17}\text{H}_{17}\text{O}_3\text{N}$ : C, 72.06; H, 6.05; N, 4.94%.
- 8) 4a: mp 176-177 °C.  $^1\text{H}$  NMR( $\text{CDCl}_3$ , 270 MHz)  $\delta$  = 3.86(6H, s), 6.65(1H, s), 7.39 (4H, ABq,  $J$  = 9.2 Hz,  $\Delta\nu$  = 230 Hz), 7.40(4H, ABq,  $J$  = 9.2 Hz,  $\Delta\nu$  = 224 Hz). MS(70 eV) 281( $\text{M}^+$ ). Found: C, 72.64; H, 5.29; N, 5.06%. Calcd for  $\text{C}_{17}\text{H}_{15}\text{O}_3\text{N}$ : C, 72.58; H, 5.37; N, 4.98%.
- 9) R. G. Shotter, D. Sesardic, and P. H. Wright, *Tetrahedron*, 31, 3069(1975); G. Bianchi and M. De Amich, *J. Chem. Res. (S)*, 1979, 311.
- 10) The ratio of *cis*-1a to *trans*-1a was exactly the same as that obtained from the 9,10-dicyanoanthracene sensitized photoisomerization of 1a via photo-induced electron transfer: K. Mizuno, Z. Hiromoto, K. Ohnishi, and Y. Otsuji, *Chem. Lett.*, 1983, 1059.
- 11) The same absorption spectrum of the radical cation of 1a was observed by the one-electron oxidation of 1a by use of  $\text{Cu}(\text{BF}_4)_2$  or anodic oxidation: N. Ichinose, K. Mizuno, and Y. Otsuji, unpublished results.

(Received October 30, 1987)